ELECTROCHEMISTRY

Test bank -chapter 19

1	If the following equation is properly balanced with the smallest whole-number coefficients, what is the coefficient of Bi^{3+} ? $\mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{BiO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Bi}^{3+}(\mathrm{aq})$ a) 1 b) 2 c) 3 d) 5
2	Given the following notation for an electrochemical cell, what is the balanced overall (net) cell reaction $\mathrm{Pt}(\mathrm{s})\|\mathrm{H} 2(\mathrm{~g})\| \mathrm{H}+(\mathrm{aq})\| \| \mathrm{Ag}+(\mathrm{aq}) \mid \mathrm{Ag}(\mathrm{s}$ a) $\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Ag}(\mathrm{s})$ b) $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$ c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$
3	A certain electrochemical cell has for its cell reaction, Which is the half-reaction occurring at the anode? $\mathrm{Zn}+\mathrm{HgO} \rightarrow \mathrm{ZnO}+\mathrm{Hg}$ a) $\mathrm{HgO}+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}+\mathrm{O}^{2-}$ b) $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$ c) $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$ d) $\mathrm{ZnO}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$
4	Calculate the value of E° cell for the following reaction $2 \mathrm{Au}(\mathrm{s})+3 \mathrm{Ca}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{Ca}(\mathrm{s})$, If $\mathrm{E}^{0} \mathrm{Au}^{3+} / \mathrm{Au}=1.5 \mathrm{~V}$ and $\mathrm{E}^{0} \mathrm{Ca}^{2+}=-2.9 \mathrm{~V}$ a) -4.37 V b) -1.37 V c) +4.37 d) -11.6
5	Which statement is true in regard to a spontaneous redox reaction? a) E° red is always negative b) E° cell is always positive c) E° ox is always positive d) E° red is always positive
6	Determine the equilibrium constant, K , for the reaction: $2 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{I}^{-}(\mathrm{aq})$ a) 5.310^{-19} b) 18.30 c) 1.9×10^{18} d) 18.3×10^{-19}
7	Calculate the cell emf for the following reaction $_\mathrm{Ni}(\mathrm{s})+2 \mathrm{Cu}^{+}(0.010 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}(0.0010 \mathrm{M})+2 \mathrm{Cu}(\mathrm{s})$ If $\mathrm{E}^{0} \mathrm{Ni}^{++} / \mathrm{Ni}=-0.25 \quad \mathrm{E}^{0} \mathrm{Cu}^{+} / \mathrm{Cu}=+0.521$ a) 0.40 V b) -0.43 V c) 0.27 V d) 0.37 V

8	8-A metal object is to be gold-plated by an electrolytic procedure using aqueous AuCl_{3} electrolyte. Calculate the number of moles of gold deposited in 3.0 min by a constant current of 10 A a) $6.2 \times 10^{-3} \mathrm{~mol}$ b) $9 \times 10^{-3} \mathrm{~mol}$ c) $1.8 \times 10^{-2} \mathrm{~mol}$ d) 160 mol
9	How many grams of nickel would be electroplated by passing a constant current of 7.2 A through a solution of NiSO4 for 90.0 min ? a) 0.20 g b) 0.40 g c) 11.8 g d) 24 g
10	How many minutes would be required to electroplate 25.0 grams of chromium by passing a constant current of 4.8 amperes through a solution containing CrCl_{3} ? a) 483 min . b) 161 min . c) 322 min . d) 1112 min .
11	Which of the following is the strongest oxidizing agent? $\begin{array}{ll} \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}-\leftrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \mathrm{E}^{\circ}=1.68 \mathrm{~V} \\ \mathrm{I} 2+2 \mathrm{e}-\leftrightarrow 2 \mathrm{I}^{-} & \mathrm{E}^{\circ}=0.54 \mathrm{~V} \\ \mathrm{Zn} 2++2 \mathrm{e}-\leftrightarrow \mathrm{Zn} & \mathrm{E}^{\circ}=-0.76 \mathrm{~V} \end{array}$ a) MnO_{4}^{-} b) I_{2} c) Zn^{2+} d) Zn
12	Which of the following is the best reducing agent? $\begin{aligned} & \mathrm{Cl}_{2}+2 \mathrm{e}-\leftrightarrow 2 \mathrm{Cl}^{-} \\ & \mathrm{Mg}^{2+}+2 \mathrm{e}-\leftrightarrow \mathrm{Mg} \\ & 2 \mathrm{H}^{+}+2 \mathrm{e}-\leftrightarrow \mathrm{H}_{2} \end{aligned}$ $\begin{aligned} \mathrm{E}^{\circ} & =1.36 \mathrm{~V} \\ \mathrm{E}^{\circ} & =-2.37 \mathrm{~V} \end{aligned}$ a) Cl_{2} b) H_{2} c) Mg d) Mg^{2+}

